博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
最小生成树的两种寻路算法及证明[上]
阅读量:7221 次
发布时间:2019-06-29

本文共 1072 字,大约阅读时间需要 3 分钟。

hot3.png

首先,什么是平面连通图?

平面连通图是一个二维网络,网络由节点和边组成,比如我随手画了一个:

_2018_03_08_10_49_16
也可以是这样:
_2018_03_08_10_50_30
它并不是一个空间连通图因为他可以拓扑变换成这样:
_2018_03_08_10_51_00
但如果这种图就不行了:
_2018_03_08_10_51_29
这样的连通图只能出现在三维空间中,所以无法满足欧拉公式.

其次,欧拉公式是沃特?

欧拉公式也叫欧拉定理,指在简单多面体上,棱数(边)、面数和点数具有一定的关系:点+面=边+2。而且规定,平面网络属于特殊的一种多面体,想不到吧(关于欧拉定理的详解,请转向我的另一篇论文《浅谈欧拉定理》),这里要注意一下,数面数的时候要算上整个图外侧的那个无穷大的面,也就是环路的数量加上1。因此平面连通图恒满足欧拉定理。   至于我为什么要介绍欧拉公式呢,是为了做准备,后面的最小生成树需要用到它!

然后,生成树有啥特点?

在平面连通图中,我们想要用一个如树枝一般层层分岔但无环的线路经过所有的节点,且这个线路必须被包含于连通图。换个说法就是,在这个连通图中,我们希望删除掉一些边,让剩下所有的边都没有形成环,且剩下的边必须相互连通,不能被隔绝,这就是生成树(spanning tree)。比如这样:

_2018_03_08_10_52_29

可以看出,不同的删边方法可以得到不同的生成树。   根据欧拉公式,生成树中的面数为1,点数不变还是n,因而得到边数等于n-1,对于连通图中的所有生成树都成立。   还是根据欧拉公式可以证明,此时在生成树中随便增添一条边(这条边当然要属于原连通图中),都必然将多出一个环,增加n条边就产生n个环。   把这张连通图看成一张地图,每个节点都是一个地点,每条边都是可走的路径,这时给每条路径赋予一个权重值,代表这条路径的长短,这在TCP/IP协议中叫做度量值或开销(cost),所以这里权值越大,路径开销反而越大。   因此,不同的生成树的总开销未必相同,其中总开销最小的就成为了本文探讨的最小生成树。   还可以看出,在树上,任意两点之间走的路径是最短距离(放之于原来的连通图比较来说)的可能性很小。所以最小生成树不是地图上寻路的最好方法。

之后,求最小生成树的两种重要算法

以上都是最基础的铺垫部分,写教程就这点麻烦,一定要从知识的根源开始讲起。那么废话不再多说,直接上算法:kruskal(克鲁斯卡尔)算法和prim(普利木)算法。这两个算法是计算最小生成树最常用的算法没有之一,因为他们既简单又完美,况且他们有很多的相似之处。

Kruskal Algorithm

前期准备:

转载于:https://my.oschina.net/u/3611008/blog/1632306

你可能感兴趣的文章
Spring Boot (十三): Spring Boot 小技巧
查看>>
【Android】Android 4.0 无法接收开机广播的问题
查看>>
ROS使用FLIR品牌的相机
查看>>
css中伪元素before或after中content的特殊用法attr
查看>>
关于T-SQL性能调优
查看>>
MySql Connector/NET MySql.Data.Entity.EF6 6.9.5 Contains 语句
查看>>
Js单元测试工具 以及 粗浅的对我的快乐运算进行测试
查看>>
File.basename
查看>>
冒泡排序
查看>>
java的对象的总结:(PO,VO,DAO,BO,POJO)
查看>>
jsp 背景图片
查看>>
WDA-1
查看>>
Oracle数据库体系结构(4)oracle控制文件
查看>>
七大排序的个人总结(二)
查看>>
完整复制/转移数据库
查看>>
unity客户端基本框架(转载)
查看>>
hadoop-2.7.0集群部署
查看>>
JDBC编程常用接口
查看>>
学习oracle中的PCTFREE和PCTUSED
查看>>
操作系统简介
查看>>